Devoir (1h50)(Calculatrice autorisée

Exercice 1 (4 points)

Déterminer, en justifiant, les limites en +∞ des suites suivantes :

1°) u définie sur N par : $u_n = \sqrt{n^2 + 1} - n$

2°) u définie sur N^* par : $u_n = \frac{n^2 + \sqrt{n-1}}{n + n\sqrt{n}}$

3°) u définie sur **N** par : $u_n = \frac{7^n - 3^n}{7^n + 5^n}$

Exercice 2 (6 points)

Déterminer, en justifiant, les limites des fonctions suivantes, on précisera les éventuelles asymptotes trouvées :

1°) $f(x) = \sqrt{4 + e^x}$ en $-\infty$.

2°) $f(x) = \frac{x^2 + 2}{x^2 - 4}$ en -2.

3°) $f(x) = \frac{x^2}{x-1} - \frac{x^2}{x+1}$ en $-\infty$.

4°) $f(x) = \frac{2 - \sin(x)}{x + \cos(x)}$ en +∞.

Exercice 3 (10 points)

On considère la suite u définie par $u_0 = 12$ et, pour tout entier naturel n, par : $u_{n+1} = \frac{1}{2}u_n + n + 2$.

- 1. Calculer u_1 et u_2 en détaillant les calculs. En déduire que la suite u n'est ni arithmétique, ni géométrique
- **2. a.** Démontrer **par récurrence** que, pour tout entier naturel n, on a : $u_n \ge 2n$. **b.** En déduire la limite de la suite u.
- 3. On considère la fonction ci-contre, écrite de manière incomplète en langage Python et destinée à renvoyer le plus petit entier naturel n tel que $u_n \ge 10^p$.
 - **a. Recopier** la fonction et **compléter** les deux instructions manquantes.
 - **b.** Quelle est la valeur renvoyée par l'exécution de l'instruction : seuil(2) ? **Justifier**.
- def seuil(p) :
 u = 12
 n = 0
 while . . . :
 u = . . .
 n = n + 1
 return n
- **4.** On considère la suite v définie pour tout entier naturel n, par : $v_n = u_n 2n$.
 - **a.** Démontrer que la suite v est géométrique. Donner sa raison et son premier terme v_0 .
 - **b.** En déduire, pour tout entier naturel n, l'expression de v_n en fonction de n.
 - **c.** En déduire que pour tout entier naturel n, $u_n = \frac{12}{2^n} + 2n$.
 - **d.** Retrouver la limite de la suite *u*. **Justifier**.
 - **c.** Montrer que la suite u est croissante à partir de $n_0 = 2$.