TS 17/09/2015

DST de Mathématiques (1h50 min - Calculatrice autorisée)

Exercice I (7,5 pts)

1) On donne deux nombres complexes $z_1 = 2 - 5i$ et $z_2 = 1 + 2i$. Donner la forme algébrique des nombres complexes suivants :

a)
$$z_1 + z_2$$

b)
$$\frac{z_1}{z_2}$$

b)
$$\frac{z_1}{z_2}$$
 c) $z_1 z_2^2$

2) Résoudre dans C les équations. (On donnera le résultat sous forme algébrique.)

a)
$$1-2z=3iz+5-i$$
 b) $\frac{1-z}{1+z}=i$ c) $\bar{z}-2iz=1+5i$

b)
$$\frac{1-z}{1+z} = i$$

c)
$$\bar{z} - 2iz = 1 + 5i$$

3) z est un nombre complexe donné. Parmi les nombres complexes suivants, préciser en justifiant lesquels sont réels, imaginaires purs ou aucun des deux.

a)
$$z\bar{z}$$

b)
$$z - \bar{z}$$

c)
$$(z+iz)(z-iz)$$

b)
$$z - \overline{z}$$
 c) $(z + iz)(z - iz)$ d) $\frac{z + iz}{z - iz}$; $z \neq 0$.

Exercice II (4 pts)

En traversant une plaque de verre teintée, un rayon lumineux perd 23 % de son intensité lumineuse.

On suppose n plaques de verre identiques et on note i_n l'intensité du rayon à la sortie de la *n*-ième plaque exprimée en candelas.

1) i_0 étant l'intensité lumineuse du rayon avant son entrée dans la première plaque de verre et i_1 l'intensité à la sortie de cette plaque, exprimer i_1 en fonction de i_0 .

2) Etude de la suite (i_n) .

- a) Quelle est la nature de la suite (i_n) ? Justifier.
- b) Exprimer i_n en fonction de n et de i_0 .
- c) Etudier les variations de la suite (i_n) .

3) Déterminer l'intensité initiale d'un rayon dont l'intensité après avoir traversé 4 plaques teintées est égale à 15 candelas.

4) Combien faut-il au minimum qu'un rayon traverse de plaques pour que son intensité lumineuse soit divisée par 5 ?

Exercice III (8,5 pts)

Partie A

On considère l'algorithme suivant :

Variables : k et p sont des entiers naturels u est un réel

Entrée : Demander la valeur de pAffecter à u la valeur 5

Pour k variant de 1 à pAffecter à u la valeur 0,5u + 0,5(k - 1) - 1,5Fin de pour

Afficher u

Faire fonctionner cet algorithme pour p=2 en indiquant les valeurs de variables à chaque étape.

Quel nombre obtient-on en sortie?

Partie B

Soit (u_n) la suite définie par son premier terme $u_0=5$ et, pour tout entier naturel n par : $u_{n+1}=0.5u_n+0.5n-1.5$

- 1) Modifier l'algorithme de la première partie pour obtenir en sortie toutes les valeurs de u_n pour n variant de 1 à p.
- 2) À l'aide de l'algorithme modifié, après avoir saisi p=4, on obtient les résultats suivants :

n	1	2	3	4
u_n	1	-0,5	-0,75	-0,375

Peut-on affirmer, à partir de ces résultats, que la suite (u_n) est décroissante ? Justifier.

- 3) Démontrer par récurrence que pour tout entier naturel n supérieur ou égal à 3, $u_{n+1} > u_n$. Que peut-on en déduire pour la suite (u_n) ?
- 4) Soit (v_n) la suite définie pour tout entier naturel n par $v_n = 0.1u_n 0.1n + 0.5$. Démontrer que la suite (v_n) est géométrique de raison 0,5 et exprimer alors v_n en fonction de n.
- 5) En déduire que, pour tout entier naturel n, $u_n = 10 \times 0.5^n + n 5$.
- 6) Déterminer alors la limite de la suite (u_n) .